Incompressible Viscous Flow Analysis by SPH
نویسندگان
چکیده
منابع مشابه
Local Poisson SPH For Viscous Incompressible Fluids
Enforcing fluid incompressibility is one of the time-consuming aspects in SPH. In this paper, we present a local Poisson SPH (LPSPH) method to solve incompressibility for particle based fluid simulation. Considering the pressure Poisson equation, we first convert it into an integral form, and then apply a discretization to convert the continuous integral equation to a discretized summation over...
متن کاملNumerical Methods for Incompressible Viscous Flow
We present an overview of the most common numerical solution strategies for the incompressible Navier–Stokes equations, including fully implicit formulations, artificial compressibility methods, penalty formulations, and operator splitting methods (pressure/velocity correction, projection methods). A unified framework that explains popular operator splitting methods as special cases of a fully ...
متن کاملTwo-dimensional Incompressible Viscous Flow around a Small Obstacle
In this work we study the asymptotic behavior of viscous incompressible 2D flow in the exterior of a small material obstacle. We fix the initial vorticity ω0 and the circulation γ of the initial flow around the obstacle. We prove that, if γ is sufficiently small, the limit flow satisfies the full-plane Navier-Stokes system, with initial vorticity ω0 + γδ, where δ is the standard Dirac measure. ...
متن کاملOptimal Shape Design for the Viscous Incompressible Flow
This paper is concerned with a numerical simulation of shape optimization in a two-dimensional viscous incompressible flow governed by Navier–Stokes equations with mixed boundary conditions containing the pressure. The minimization problem of total dissipated energy was established in the fluid domain. We derive the structures of shape gradient of the cost functional by using the differentiabil...
متن کاملA Projection Method for Incompressible Viscous Flow on a
A Projection Method for Incompressible Viscous Flow on a Deformable Domain by David Paul Trebotich Doctor of Philosophy in Mechanical Engineering University of California, Berkeley Professor Phillip Colella, Chair 1 A second-order accurate finite difference method is presented for numerical solution of the incompressible Navier-Stokes equations on a deformable domain. The target problem is flow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B
سال: 2004
ISSN: 0387-5016,1884-8346
DOI: 10.1299/kikaib.70.1949